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Compressibility effects within decaying isotropic turbulence and homogeneous 
turbulent shear flow have been studied using direct numerical simulation. The objective 
of this work is to increase our understanding of compressible turbulence and to aid the 
development of turbulence models for compressible flows. The numerical simulations 
of compressible isotropic turbulence show that compressibility effects are highly 
dependent on the initial conditions. The shear flow simulations, on the other hand, 
show that measures of compressibility evolve to become independent of their initial 
values and are parameterized by the root mean square Mach number. The growth rate 
of the turbulence in compressible homogeneous shear flow is reduced compared to that 
in the incompressible case. The reduced growth rate is the result of an increase in the 
dissipation rate and energy transfer to internal energy by the pressure-dilatation 
correlation. Examination of the structure of compressible homogeneous shear flow 
reveals the presence of eddy shocklets, which are important for the increased 
dissipation rate of compressible turbulence. 

A N D  W. C .  

1. Introduction 
Compressible turbulent flows arise in many important engineering applications, 

including both conventional gas turbine engines and ramjet propulsion systems, 
and also in astrophysics (Norman & Winkler 1985). Predictions for these flows 
require turbulence models. Current models are based primarily on knowledge about 
incompressible turbulence. A better understanding of compressible turbulence would 
enable improvement in these models. The objective of this work is to contribute to this 
new understanding. The work is described in more detail in the report by Blaisdell, 
Mansour & Reynolds (1991 a;  hereinafter referred to as BMR). 

The current work focuses on two simple compressible turbulent flows; (i) the decay 
of homogeneous isotropic turbulence, and (ii) the build-up of homogeneous turbulence 
in a uniform mean shear flow. Through study of these simple flows we have learned 
much about the fine-scale structure of compressible turbulence. In addition, we have 
determined the relative importance of various terms in the statistical equations, which 
is key information needed for improved modelling. The turbulent transport terms 
important for inhomogeneous turbulence are zero in these flows, so comparable 
information about these terms remains to be found from more complex simulations. 

A brief review of important previous contributions to the understanding of 
compressible turbulence will be useful in discussing the present results. The remainder 
of this section highlights some relevant past work. 
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Kovasznay (1 953) examined the linearized equations for compressible turbulence 
and showed the existence of three basic modes - the vorticity mode, the acoustic mode 
and the entropy mode. The nonlinear interactions of the modes were examined by Chu 
& Kovasznay (1958) using a perturbation analysis based on small amplitudes. They 
were able to write down the first-order interaction terms and give estimates as to which 
ones were important. Their analysis gives some physical insight into compressible 
turbulence and how the modes affect one another; however, it is not clear how it can 
be used to study fully nonlinear turbulence for which the decomposition into such 
modes cannot be made. 

A useful decomposition which can be made for finite-amplitude turbulence was 
provided by Moyal (1951), who introduced a decomposition of the velocity field in 
Fourier wave space which is the equivalent of Helmholtz’s decomposition (see for 
instance Aris 1962). The velocity is decomposed into a solenoidal part, which is 
divergence free, and a dilatational part, which is irrotational. From this decomposition 
Moyal introduced decomposed velocity spectra. By writing the dynamical equations for 
the velocity spectrum tensors, he was able to show that, for the case of isotropic 
turbulence, the two fields interact only through the nonlinear terms. 

The two-point statistics and associated spectra of compressible turbulence have been 
the subject of several theoretical studies. Chandrasekhar (1951) studied two-point 
correlations of density in compressible isotropic turbulence and derived an integral 
invariant for density similar to that of Loitsyanskiy for velocity in incompressible 
turbulence. Considerable theoretical work has been done by Russian researchers on 
modifications to the Kolmogorov spectrum owing to compressibility (Zakharov & 
Sagdeev 1970; Kadomtsev & Petviashvili 1973; Moiseev et al. 1977; L’vov & 
Mikhailov 1978a, b;  Moiseev et al. 1981). Moiseev et al. (1981) find that, for subsonic 
turbulent Mach numbers, the -$ slope of the energy spectrum in the inertial subrange 
is altered by compressibility and a slope of - (5  -M)/(3 - M2) ensues, so that for 
Mach numbers of the order of 1 a slope of -2 is obtained. 

Other theoretical work of note includes Lighthill’s contributions to the foundations 
of turbulence-generated sound (1952, 1954, 1955, 1956, 1962). Most of this work 
concerns the radiation of sound to the far field and is not directly applicable to 
homogeneous turbulence. The nonlinear interaction of shock turbulence in one and 
two dimensions has been studied by Tatsumi & Tokunaga (1974) and Tokunaga & 
Tatsumi (1 975). Much of the early theoretical research has been summarized and 
expanded upon by Monin & Yaglom (1971 $§ 1.7 and 7.20) and by Hinze (1975,§3.9). 

Numerical simulations of compressible turbulence have only recently been used as 
an investigative tool. The first published results of numerical simulations of 
compressible turbulence were those of Feiereisen et al. (1981, 1982). They studied 
homogeneous shear flow at root mean square (r.m.s.) Mach numbers up to 0.32 using 
direct numerical simulations with 643 grid points. Their simulations did not extend far 
enough in time to examine the effects of compressibility on the growth of the 
turbulence; however, they were able to see some effects of compressibility on the 
structure of the Reynolds stresses and on the pressure-strain terms in the Reynolds 
stress budgets. Feiereisen et al. (1981) also developed a method of generating initial 
conditions which made the initial flow field nearly incompressible. Such initial 
conditions have been used subsequently in simulations of decaying isotropic turbulence 
and have been found to have a strong restraining effect on the development of 
compressibility effects. However, as is shown in $4 of this paper, compressibility effects 
in homogeneous shear flow are less dependent on initial conditions than in decaying 
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isotropic turbulence. Therefore, the type of initial conditions employed by Feiereisen 
should not have a restraining effect on homogeneous shear flow. 

More recent simulations include those of Delorme (1983, who considered 
homogeneous shear flow using large eddy simulation (LES), and Erlebacher et al. 
(1992), who studied decaying isotropic turbulence for initial r.m.s. Mach numbers up 
to 0.6 and investigated sub-grid scale models for LES. Most of their simulations used 
the initial conditions developed by Feiereisen and, therefore, showed little effect of 
compressibility. 

Significant progress in the simulation of compressible turbulence was achieved by 
Passot & Pouquet (1987). They performed two-dimensional DNS of decaying isotropic 
turbulence for r.m.s. Mach numbers up to 1.65 using a 256' grid. They considered 
initial conditions that were more general than those used by previous workers. They 
found that, for r.m.s. Mach numbers below 0.3 and with nearly uniform density initial 
fields, the density field remained nearly uniform and few compressibility effects were 
seen. On the other hand, if the initial conditions contained sufficiently strong density 
and pressure variations, then the flow developed eddy shocklets and compressibility 
effects became important. At higher r.m.s. Mach numbers, strong eddy shocklets 
developed regardless of the initial density variation level. Passot, Pouquet & Woodward 
(1988) later investigated the formation of shocks in decaying isotropic turbulence with 
initial r.m.s. Mach numbers as high as 4. 

Sarkar et al. (1991 c)  performed a series of simulations at low r.m.s. Mach number 
and introduced the idea that compressible turbulence at low Mach numbers tends 
toward acoustic equilibrium. The behaviour of isotropic turbulence at low r.m.s. Mach 
numbers was analysed further by Erlebacher et al. (1990) and Erlebacher (1990) who 
developed predictions of how the fraction of energy in the dilatational velocity field 
and the r.m.s. pressure fluctuations evolve on an acoustic timescale. They also state 
that a necessary condition for shocks to form at low Mach numbers is that the initial 
conditions be out of acoustic equilibrium, with large pressure fluctuations present. 

Lee, Lele & Moin (1991) studied the existence of eddy shocklets in three-dimensional 
decaying isotropic turbulence using high-Reynolds-number simulations. They showed 
that shocklets can arise even when the initial conditions have a purely solenoidal 
velocity field and do not contain any pressure fluctuations. 

Staroselsky et al. (1990) studied forced isotropic turbulence and introduced the 
concept of a scale-dependent effective speed of sound. Dahlburg et al. (1990) compared 
the inverse energy cascade in forced two-dimensional compressible isotropic turbulence 
with that for the incompressible case. 

Kida & Orszag (1 990 a, b) have simulated decaying and forced compressible 
isotropic turbulence. For the decaying isotropic simulations they do a detailed 
investigation of the generation of vorticity through the baroclinic torque caused by 
curved shocks. The forced simulations include purely solenoidal and purely dilatational 
forcing and show that the two velocity fields are only weakly coupled. 

Homogeneous shear flow has been reconsidered only most recently (BMR; Blaisdell, 
Mansour and Reynolds 1991b; Sarkar, Erlebacher & Hussaini 1991a, b, 1992). There 
are several reasons for studying homogeneous shear flow. As mentioned earlier, 
compressibility effects are less dependent on initial conditions than for isotropic 
turbulence. The r.m.s. Mach number in homogeneous shear flow increases in time, so 
compressibility effects become stronger as the flow develops, whereas in decaying 
isotropic turbulence the r.m.s. Mach number decreases. Also, homogeneous shear flow 
is a natural extension in complexity over isotropic turbulence. 

The results of BMR and Sarkar et al. (1991 a)  are generally consistent. One difference 
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in the studies is that the simulations of BMR include grid sizes up to 192 x 192 x 192, 
while those of Sarkar et al. are at most 128 x 128 x 128. The larger grid allows the 
simulation to extend further in time. Also, BMR and Sarkar et al. investigated different 
statistics in an effort to characterize compressibility effects. Among other quantities, 
BMR included the study of the probability density functions of the fluctuations of 
pressure and density, while Sarkar et al. decomposed the pressure into incompressible 
and compressible parts and studied the evolution of their r.m.s. values. Sarkar et al. 
(1992) considered the structure of the strain rate tensor for compressible turbulence. 
Lastly, BMR have done a more extensive study of the structure of the turbulence. 
While there is some overlap in the description of compressibility effects, these two 
studies provide complementary data. 

2. Problem formulation 
2.1. Governing equations 

The time-dependent compressible Navier-Stokes equations are solved assuming that 
the fluid is a continuum satisfying local thermodynamic equilibrium, the fluid is 
Newtonian, and that Stokes' relation between the second coefficient of viscosity A* and 
the dynamic viscosity p*, A* = -$p*, is valid (asterisks denote dimensional quantities). 
The ideal gas equation of state, p* = p*R*T*, is used, where p* is the pressure, p* the 
mass density, R* the specific gas constant, and r" the temperature. The specific heats 
are assumed constant, and the simulations use a ratio of specific heats y = = 1.4. 
Viscosity obeys a power law temperature dependence, ,u*/p,* = (r"/c)n. The 
simulations use IZ = 0.67, the value for nitrogen (White 1974). The Prandtl number, 
Pr = p*cX/k*, is constant, where k* is the thermal conductivity, so k* varies with 
temperature as p*. The simulations use Pr = 0.7. 

2.1.1. Non-dimensionalization 
The governing equations are solved in non-dimensional form. We choose as the 

velocity scale the speed of sound based on the initial mean temperature, c,* = ( yR*cP .  
The non-dimensional velocity is then, ui = u:/c,*. For homogeneous turbulence the 
mean flow field has no intrinsic lengthscale so we use an arbitrary lengthscale, L,*, 
which is related to the computational box size.The non-dimensional spatial coordinate 
is therefore xi = x:/L,*, and time is non-dimensionalized as t = t*c,*/L,*. The density 
is scaled on the initial mean density, p,*, so that p = p*/p,*. For consistency the 
temperature is non-dimensionalized by the initial mean temperature, T = P/G. The 
pressure is non-dimensionalized asp = p*/p,* ct2. The viscosity is non-dimensionalized 
by the viscosity at the initial mean temperature, p = ,u*(T*)/pt where ,ut = ,u*(G). 
These normalizations leave the ratio of specific heats, y, the Prandtl number Pr and the 
Reynolds number Re = pz L,* c,*/p,* as the only non-dimensional parameters in the 
governing equations. Note that the Reynolds number is a computational Reynolds 
number based on the scaling constants. 

With the above assumptions and non-dimensionalization, the compressible 
Navier-Stokes equations can be written as 

aP a - + - @Ui) = 0, 
at  ax, 
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a a -(peT)+-(peTui) = 
at ax, 

(2.3) 
where eq is the non-dimensional total energy per unit mass given by eT = e++uiui 
where e is the non-dimensional internal energy per unit mass. The equation of state 
becomes p = pT/y.  

The convective terms in the momentum equation are recast in a form used originally 
for incompressible flows by Arakawa (1966) and Kwak, Reynolds & Ferziger (1975) 
and extended to compressible flows by Feiereisen et al. (1981), 

This alternate form of the equations of motion improves the conservation properties 
of the numerical method, and reduces aliasing errors (BMR). 

2.1.2. Mean flow field 
In performing the direct numerical simulations, the mean velocity field is imposed 

and a solution is obtained for the fluctuations. There are several types of averages used 
in discussing compressible turbulence. The Reynolds decomposition involves a mean 
and a fluctuation, 

where ( ) denotes an ensemble average. The Favre (1965 a, b)  mass-weighted average, 
denoted by a tilde, is defined by 

The Favre fluctuation, denoted by f”, is defined by 

By definition (f’) = 0 and 8 = 0;  however, note that (f”) =k 0. By invoking the 
ergodic hypothesis (see Monin & Yaglom 1971, 543.3 and 4.7), the ensemble average 
(f), can be replaced by a volume average, which is denoted byfr 

In homogeneous turbulence, p’u; = 0, from which it follows that Favre averages and 
Reynolds averages of velocity components are identical, and hence u: = u;. 

The restrictions on the mean fields that allow initially homogeneous turbulence to 
remain homogeneous have been found by Feiereisen et al. (1981), Delorme (1985) and 
BMR. The mean density field and mean pressure must be uniform in space, p = p(t) 
and p=p( t ) .  From the equation of state it follows that the mean temperature is 
uniform in space. It is emphasized that the density, pressure and temperature fluctu- 
ations are functions of space and time, p’ = p’(x, t),  p’ = p’(x, t),  and T‘ = T‘(x, t) ,  
and only the mean quantities are uniform. For isotropic turbulence the mean 
velocity is zero, while for homogeneous shear flow the mean velocity has a uniform 
transverse gradient, which is taken to be in the x,, or y ,  direction and is given by 
aC,/ax, = S, as shown in figure 1. 

2.1.3. Equations in moving coordinates 
The use of periodic boundary conditions is appropriate for homogeneous turbulence, 

provided that the computational domain is several times larger than the integral scales 
of the turbulence. However, because the mean velocity field vanes in space, which 
introduces a non-periodic coefficient into the equations, one cannot apply periodic 

f = (f>+f’ (2.5) 

f= (Pf > l ( P > .  (2.6) 

f =f+f”. (2.7) 
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FIGURE 1. Schematic of the mean velocity field for homogeneous turbulent shear flow. 

boundary conditions directly. Therefore, we adopt the moving coordinate system first 
used in numerical simulations by Rogallo (1 98 l), 

X; = B,(t) xi (t’ = t )  

where initially we have B,(O) = diag (PI, p2, p3). We choose 
p1 = 27c/(Lz/L3, p2 = 2n/(L,*/L,*) and p3 = 27r/(L$/L,*) 

so that the computational domain in the new coordinate system is 271. x 27c x 2n. The 
explicit spatial dependence of the mean velocity field which prevents the use of periodic 
boundary conditions can be removed if the new coordinate system moves with the 
mean motion. For the case of shear flow the coordinate transformation matrix is 

Solutions for more general cases are given in BMR. 
The above transformation does not remove the explicit spatial dependence in the 

total energy equation because the mean velocity gives rise to a quadratic spatial 
dependence which cannot be removed by a linear transformation. However, we can use 
the mean momentum equation to eliminate the quadratic spatial dependence, obtaining 
an equation for what we refer to as the ‘pseudo total energy’, 

(2.10) 
The pseudo total energy is the total energy without the contribution from the mean 
velocity. An alternative is to use a pressure equation as was done by Feiereisen et al. 
(1981). The advantage of using the equation for q5 instead of that for pressure is that 
the evaluation of three fewer derivatives is required making the use of the q5 equation 
somewhat less computationally expensive. Also, for the isotropic case, q5 is the same as 
the total energy. 

The equations of motion for the case of shear flow, including the modified convective 
terms, are summarized below : 

q5 = pe +&u; u;. 

(2.1 1) 
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- @u;O = - PU; SSj, - @u; Bki) - Bki) + 
at‘ ax, 
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(2.12) 

(2.13) 

(2.14) 

(2.15) 

A formulation of the equations of motion for more general mean flows is given in 
BMR. 

2.2. Numerical method 
2.2.1. Choice of numerical method 

For turbulent flows the most outstanding requirement imposed on the numerical 
method is the wide range of lengthscales that need to be represented accurately. For 
this reason spectral methods are commonly used for direct simulations of in- 
compressible turbulence. For simulations of compressible turbulence, however, the use 
of spectral methods causes some concern. In compressible turbulence, shock waves 
may form, and it is well known that spectral methods lose their characteristic 
exponential convergence when the solution contains steep gradients. 

Passot & Pouquet (1987) successfully used a spectral method to study two- 
dimensional compressible decaying isotropic turbulence. They showed that simulations 
can be performed with a spectral method at fairly high r.m.s. Mach numbers as long 
as the Reynolds number is sufficiently low. Since the simulations are for viscous flows, 
any shock waves which develop will have a finite thickness. As long as they are 
adequately resolved a spectral method will produce an accurate solution. We shall see 
from the simulation results that weak to moderately strong shocks do form in the 
turbulence and that they cause some resolution problems. The issue of resolution is 
discussed further in $44.5 and 5.3. 

2.2.2. Spatial direrencing 
The method implemented is a pseudo-spectral Fourier method in which the 

nonlinear terms are formed in physical space. The transformations between physical 
space and Fourier wave space are implemented using a fast Fourier transform (FFT) 
algorithm. 

Nonlinear terms lead to the formation of Fourier modes which do not lie within the 
resolved range of wavenumbers, which for each dimension is given by k, = 27cn/L with 
n = -:N+ 1, . . . , +N. When such modes are discretized they mimic (or are ‘aliased’ to) 
modes which are within the resolved wavenumber range. This gives rise to ‘aliasing’ 
errors. (For a good discussion of aliasing errors see Rogallo 1981 .) In the current work, 
aliasing errors are controlled in two ways. In 92.1 the equations of motion were written 
with a modified form of the convective terms. BMR have shown the modified 
convective terms reduce the magnitude of aliasing errors. The second means of 
controlling aliasing errors is to ensure that the simulations are well resolved, so that the 
magnitude of the unresolved Fourier modes which are formed from nonlinear terms 
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will be small and thus the aliasing errors will be small. Aliasing errors also arise during 
the remeshing procedure for shear flow, discussed in 52.2.4, and these are explicitly 
removed. 

2.2.3. Time advancement 
The time advancement scheme used in this study is a third-order compact storage 

Runge-Kutta method developed by Wray (1986). One has a choice of advancing the 
Fourier coefficients or local physical variables, and for computational economy we 
chose to advance the local variables. With this choice, the formation of nonlinear terms 
does not require any Fourier transforms; however, transforms are needed to evaluate 
derivatives. For the governing equations there are fewer derivatives that need to be 
evaluated than nonlinear terms. Thus the number of FFTs required is less if time 
advancement is performed in physical space. This is the method chosen for the current 
work. 

2.2.4. Remeshing 
During a simulation of shear flow the computational domain deforms with the mean 

velocity, and the grid, which is initially Cartesian, becomes highly skewed at later 
times. In order to avoid a highly skewed mesh, the periodic extension of the flow field 
is used to interpolate the data onto a coordinates system skewed in the opposite sense. 
The grid then advances back toward a Cartesian mesh. This process is depicted in 
figure 2. The remeshing process takes place at multiples of the remesh time, t,, which 

(2.16) is given by 

Most of the shear flow simulations use domains with PI = 0.5 and P, = 1.0 so that 
L, = 2L, and t ,  = 11s. 

A straightforward approach to the remeshing process leads to aliasing errors. In the 
current approach, we follow Delorme (1985) and avoid aliasing errors by carrying out 
the remesh in wave space. The modes which do not lie within the resolved wavenumber 
range for the new grid are simply discarded. The Fourier coefficients for the modes in 
the new system which do not correspond to modes from the old systems are set to zero. 

2.3. Initial conditions 
To begin the simulations, initial conditions for the dependent variables must be 
provided. All of the simulations performed began with isotropic initial conditions. The 
fluctuations of each quantity are parameterized by an r.m.s. fluctuation level and the 
shape of the three-dimensional correlation spectrum. The initial fluctuations are 
specified as random fields following a procedure developed by Rogallo (1981). Details 
are given in BMR. 

For compressible turbulence there are more parameters that need to be specified 
than for incompressible turbulence. When non-dimensionalizing the problem, the 
density is scaled by its initial mean value. Therefore, the mean non-dimensional density 
is unity. However, the r.m.s. level of the density fluctuations must be specified along 
with the shape of the density variance spectrum. In contrast to the incompressible case, 
the velocity field for compressible turbulence does have an intrinsic velocity scale - the 
initial mean speed of sound. Thus, in specifying the non-dimensional problem, the 
initial r.m.s. velocity must be given, whereas for the incompressible case the velocity 
can be scaled so that the r.m.s. velocity is unity. Since the velocity is non- 
dimensionalized by the speed of sound based on the initial mean temperature, the non- 
dimensional r.m.s. velocity is similar to the r.m.s. Mach number. Furthermore, the 
velocity can be decomposed into solenoidal and dilatational components, u r  and u?, 

tR  = v2/Pl)/2s* 
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FIGURE 2. Computational domain for shear flow when (a) the grid is Cartesian, 
(b) just before remeshing, (c) just after remeshing. 

respectively, using Helmholtz' decomposition. The relative r.m.s. levels of these two 
velocity fields is parameterized by 

(2.17) 
Also, separate velocity correlation spectra, E8((k) and Ed@),  may be used. The 
temperature fluctuations are also specified; alternatively, the pressure fluctuations 
could be given. The temperature is scaled on its initial mean value and thus its initial 
mean value is unity. One needs to specify the initial r.m.s. fluctuation level of the 
temperature and the temperature variance spectrum. 

The specification of initial conditions for compressible turbulence introduces many 
parameters. In order to make the problem tractable some simplifications are made. We 
use the same spectrum shape for all the fluctuating fields. Thus 

E,(k) K ES(k) cc P ( k )  cc E,(k) cc E(k). (2.18) 
Although the spectrum shapes are the same the r.m.s. values of the variables can differ. 
Most of the simulations make use of a box-type spectrum shape for which E(k) is 
constant in a certain wavenumber band and zero outside. This was done in order to 

--- - d" - x = aid" uy/(uy uy + 24; a;) = ui ui /u; a;. 

17-2 
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compare to the incompressible simulations of Rogers, Moin & Reynolds (1986). An 
alternate spectrum shape is used for some of the isotropic simulations and is described 
in $3.3. 

2.4. Test cases 
The computer program developed for this work was tested using two types of test 
problem. The first includes the shock tube problem of Passot & Pouquet (1987) and 
some extensions. This problem tests the programming of the equations of motion 
without having an imposed mean velocity field. The second set of tests involves laminar 
flow with an imposed mean velocity field and tests the programming of the mean 
velocity. 

The results of these tests help give confidence that the equations of motion are 
programmed correctly. Details of the tests run and their results are given in BMR. 

3. Decaying isotropic turbulence 
The simplest kind of turbulence is isotropic and, therefore, isotropic turbulence forms 

a natural starting point for the study of compressible turbulence. This flow has been 
considered in many recent investigations. The simulations presented in this section are 
limited in scope, but they show an important aspect of decaying isotropic compressible 
turbulence which is later contrasted to the behaviour of homogeneous shear flow. It is 
shown that compressibility effects in decaying isotropic turbulence are highly 
dependent on initial conditions. This effect makes it difficult to model compressible 
isotropic turbulence and implies that, in general, simple algebraic turbulence models 
cannot capture compressibility effects for decaying isotropic turbulence. The shear flow 
simulations presented in the next section are found to be less dependent on initial 
conditions, so that compressibility effects are more easily parameterized. In both cases, 
the observed behaviour can be understood from linear theory. 

3.1. Linear theory for compressible isotropic turbulence 
Examination of the linear equations of motion, pioneered by Kovasznay (1953), gives 
insight into the physics of compressible turbulence. He showed that compressible 
turbulence consists of three modes which act independently. A linear analysis similar 
to that of Kovasznay is provided below in order that the results for isotropic 
turbulence may be contrasted with those for shear flow, discussed in $4. 

The inviscid case is examined first. Consider the equations of motion with the mean 
velocity set to zero and the molecular diffusion terms neglected. Assume that the 
fluctuations of density, pressure and temperature are small with respect to their mean 
values. Also, assume that the magnitude of the velocity is small (since the velocity is 
non-dimensionalized by the speed of sound based on the initial mean temperature, this 
is the same as assuming a low r.m.s. Mach number). Using the above assumptions and 
keeping only linear terms, one obtains the inviscid linearized equations. From these 
linearized equations one can derive equations for the vorticity, pressure and entropy. 
These are 

* I  

dwi 
- = 0, at 
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where w; is the fluctuating vorticity, c is the mean speed of sound, and s' is the 
fluctuating entropy. 

Equations (3. l), (3.2) and (3.3) show that the fields of vorticity, pressure and entropy 
are independent of one another. These fields are called 'modes' in the classical 
literature on compressible turbulence (Kovasznay 1953 ; Morkovin 1962), and the three 
fields are referred to as the vorticity mode, the acoustic mode and the entropy mode. 
Equation (3.1) shows that the vorticity field is frozen. From (3.2) we see that the 
pressure fluctuations obey a wave equation. Finally, the entropy field is also frozen, as 
displayed by (3.3). Notice that for turbulence with no mean velocity gradients the three 
modes are decoupled. This is an important point to which we will return. 

If one accounts for viscosity in the linearized analysis, a diffusion equation is 
obtained for the vorticity, 

The vorticity field remains independent of the pressure and entropy. However, the 
pressure and entropy fields become coupled. 

Kovasznay was able to obtain three independent modes for the viscous case by 
splitting the entropy field into two parts, one of which is associated with the pressure 
fluctuations, or the acoustic mode. By doing this, the modes no longer consists of single 
fields; the acoustic mode has a pressure field and an entropy field associated with it. 
The equations for these two fields are coupled to each other, but they are independent 
of the vorticity and the other part of the entropy. The viscous analysis of Kovasznay 
assumed Pr = 2. For other values of the Prandtl number it is necessary to split both the 
pressure and the entropy into two parts in order to obtain three independent modes. 
The concept of independent modes seems to become clouded when it is necessary to 
split physical fields, such as the pressure and entropy, into different parts. Yet, for the 
inviscid linear case the decomposition is clear, and for the viscous case one can see that 
the vorticity is independent of the pressure and entropy. 

Chu & Kovasznay (1958) developed a nonlinear theory which evaluates the 
interactions of the modes. While the decomposition of the turbulence into modes is a 
useful concept for understanding the physics of compressible turbulence, a general 
turbulent flow field cannot be decomposed into independent modes. The theories based 
on the linearization of the equations of motion give qualitative information, but they 
cannot be used to analyse the simulation results in a quantitative manner. 

In this work we will refer to modes with the understanding that they are not defined 
in any concrete sense for a fully nonlinear turbulent flow field. We will loosely associate 
the vorticity and solenoidal velocity fields with the vorticity mode; the pressure, density 
and dilatational velocity fluctuations with the acoustic mode ; the entropy field with the 
entropy mode. 

3.2. Isotropic simulations 
Simulations of decaying isotropic turbulence were performed with initial r.m.s. Mach 
numbers from 0.3 to 0.7. For the purposes of modelling, it was hoped that measures 
of compressibility could be expressed as functions of the turbulent Mach number. 
Initial condition parameters other than the r.m.s. Mach number were also varied to see 
their effect. 

The parameters for the simulations discussed below are given in table 1.  Each 
simulation used a 963 grid. M ,  in table 1 is the initial non-dimensional velocity variance, 
which is a close approximation to the r.m.s. Mach number. It should be pointed out 
that the value of Mo given in table 1 is the initial value and that the instantaneous r.m.s. 
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Case idc96 ie96 ifd96 ife96 ikgc96 ikhb96 

@")% 0.0 0.15 0.15 0.0 0.0 0.15 
(rr)! 0.0 0.15 0.15 0.0 0.0 0.15 

M ,  0.3 0.3 0.7 0.7 0.5 0.5 

EO(k)+ 1 1 1 1 2 2 

x o  0.0 0.25 0.25 0.0 0.0 0.1 

Re 515 536 172 166 $ t 

t , i d / T O  4.9 5.0 4.9 4.6 2.0 2.0 
160.8 160.9 90.2 91.0 500 500 

?Type of initial sgectrum: (1) top hat spectrum with energy in the wavenumber band 8 < k < 16, 

$Computational Reynolds number adjusted to keep Re, constant until t = T ~ .  
(2) E(k) - k4e-2(kILo) with k,  = 6. 

TABLE 1. Initial condition and run parameters for the isotropic simulations 

Mach number, Mr.m.s., quickly decays to lower values. For each Mach number, two 
types of initial condition were used. The first was an attempt to include fluctuations 
only from the vorticity mode. For this type, the initial density, pressure and 
temperature fields were uniform and the velocity fluctuations were purely solenoidal. 
The second kind of initial condition imposed allowed for some fluctuations in the 
acoustic and entropy modes. These simulations were used to investigate the effects of 
the initial r.m.s. Mach number and the effects of initial acoustic and entropic 
fluctuations. The results of the simulations are discussed below in the context of 
evaluating turbulence models. 

3.3.  Dependence of compressibility efects on initial conditions 
Sarkar et al. ( 1 9 9 1 ~ )  and Zeman (1990) have proposed models for the effects of 
compressibility on the dissipation rate of the turbulent kinetic energy. These models are 
formulated in terms of algebraic relations involving the r.m.s. Mach number. In this 
section we show that for isotropic turbulence compressibility effects on the dissipation 
rate depend more on the initial conditions than on the r.m.s. Mach number. Therefore, 
in general, these models cannot work for isotropic turbulence. 

The dissipation rate of turbulent kinetic energy is well approximated by 

(3.5) 

where E ,  is the solenoidal dissipation rate and ed is the dilatational dissipation rate. The 
full expression for E has an additional term involving fluctuations of viscosity; 
however, it has been found from the simulations to be negligible. The dissipation rate 
can be written as 

Sarkar et al. ( 1 9 9 1 ~ )  and Zeman (1990) have proposed using an incompressible 
turbulence model to determine E,  and incorporating compressibility effects through 
ed/es .  Both models are formulated as Ed/€, =f(M,).  (The turbulent Mach number, 
M,, as defined by Sarkar et al. and Zeman is very close in value to the r.m.s. Mach 
number and, therefore, little distinction is made here between the two.) 

E = €, + Ed = €,( 1 + E d / € , ) .  (3.6) 
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FIGURE 3. Evolution of x, for (a) simulations -, idc96 and ----, ie96 which have M ,  = 0.3 
and (b) simulations -, ifd96 and ----, ife96 which have M ,  = 0.7. 

A measure of compressibility is the fraction of the dissipation rate due to dilatation, 

Figure 3 (a)  shows the history of x, for simulations idc96 and ie96, both of which have 
an initial r.m.s. Mach number of 0.3 but differ in their initial value of x and hence x,. 
The value of x, is seen to remain very different for the two simulations. The runs extend 
to five initial eddy turnover times, which is a significant amount of time. Therefore, this 
result is not expected to change by merely continuing the simulations further. The same 
plot is given in figure 3(b) for simulations ifd96 and ife96, which both have an initial 
r.m.s. Mach number of 0.7. As with the other two simulations, x, remains different. 
From these comparisons we see that the development of x, in isotropic turbulence is 
highly dependent on its initial value and cannot be parameterized solely by the 
turbulent Mach number. 

The behaviour of X, for the decaying isotropic simulations is consistent with the 
linear theory discussed in 93.1. From the inviscid linearized equations we saw that the 
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FIGURE 4. History of Re, for -, ikgc96 and ---, ikhb96. 

vorticity, pressure and entropy fields in compressible turbulence are decoupled. With 
the addition of viscosity the entropy and pressure fields become coupled, but they still 
are not coupled to the vorticity field. Any interaction between the vorticity and the 
pressure and entropy fields is a result of nonlinearities. The weak nonlinear coupling 
of the modes gives rise to the strong dependence of the turbulence on the initial 
amplitudes of the various fields. Because the vorticity mode is decoupled, its strength 
depends mainly on the initial level of the vorticity fluctuations. 

Erlebacher (1990) has also shown that compressibility effects in isotropic turbulence 
are dependent on initial conditions. Erlebacher et al. (1990) have used ideas from linear 
acoustics to predict the evolution of x, over an acoustic timescale (assumed to be much 
smaller than the timescale for viscous decay). Their predictions are based on the 
pressure and dilatational velocity fluctuations coming to an equilibrium. The predicted 
levels of x, agree well with their simulation results showing that linear theory does give 
insight into the behaviour of compressible turbulence. 

Both the simulations discussed above and those of Erlebacher et al. (1990) were 
carried out at low Reynolds numbers. The initial values of the turbulent Reynolds 
number, Re, = jP2q*4/e*/i*,  for the current simulations are given in table 1. Since 
nonlinear vortex interactions are weak for low-Reynolds-number turbulence, there was 
some concern that the observed dependence on initial conditions was merely due to the 
low Reynolds numbers of the simulations. 

In order to test whether the dependence on initial conditions would persist at higher 
Reynolds numbers, simulations ikgc96 and ikhb96 were performed. As shown in table 
1, the initial conditions for the two simulations are the same except that ikgc96 contains 
no energy in the dilatational velocity field and no density or temperature fluctuations 
while ikhb96 contains significant acoustic disturbances. The initial turbulent Reynolds 
number for both simulations is Re, = 500 which is significantly higher than that of the 
simulations discussed above. The initial spectrum was modified to the form 

(3.8) 
where the spectrum peak is located at k,. This spectrum shape is closer to that of 
developed turbulence than the box-type spectrum used in the other simulations 
described in table 1. More importantly, k,  was chosen to be 6; by moving the peak in 
the spectrum to lower wave numbers, we were able to simulate turbulence at higher 

E(k) cc k4 exp [ - 2(k/k,J2], 
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FIGURE 5. Evolution of x, for --, ikgc96 and ----, ikhb96. 

Reynolds numbers. However, this also means that, as the lengthscales of the turbulence 
grow, the effects of the periodic boundary conditions are felt sooner. 

The Reynolds numbers of the previous simulations quickly decay during the early 
part of the simulation. Since it takes some time for a simulation to develop realistic 
turbulence, we were concerned that Re, would have decayed to too low a value by the 
time the simulations were useful. Therefore, it was decided to adjust the computational 
Reynolds number during the first part of the simulation so that Re, remained constant. 
This was done for a period of one initial eddy turnover time, after which time the 
computational Reynolds number was held fixed and Re, was allowed to decay. In this 
way developed turbulence at high Reynolds numbers is obtained. Although the 
Reynolds number remains high, the r.m.s. Mach number decays during the entire 
course of the simulations. The history of Re, for the two simulations is shown in figure 
4. After Re, is released it decays to about 250 which is still significantly large, and so 
the results should not be clouded by low-Reynolds-number effects. 

The evolution of x, for the two simulations is given in figure 5. Both simulations 
show a large increase at early times followed by decay and then a slight increase. The 
value of x6 for simulation ikhb96 remains much greater than that for ikgc96. This is 
true during the time when Re, is held fixed and after it is released. Therefore, it appears 
that the development of x, is dependent upon initial conditions even at higher Reynolds 
numbers. 

The acoustic fluctuations become very strong in these two simulations, especially for 
ikhb96, suggesting the formation of shock waves. Examination of the flow fields shows 
shock-like structures ; however, they are not well resolved. Because of the resolution 
issue, the evidence that x, depends upon initial conditions even at high Reynolds 
numbers is not conclusive, but we believe this to be the case. 

The dependence of 2, on initial conditions also holds for other measures of 
compressibility, such as x and the variances of density and pressure. This dependence 
on initial conditions means that simple algebraic turbulence models such as those of 
Sarkar et al. (1991 c) and Zeman (1990) will not work for decaying isotropic turbulence. 
For very high r.m.s. Mach numbers the interactions between the vorticity and the 
acoustic modes may be strong enough that 2, might become independent of its initial 
value. However, this would require r.m.s. Mach numbers much higher than those 
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simulated here. We will see in the next section that compressible homogeneous shear 
flow is less dependent on initial conditions than isotropic turbulence and, therefore, 
compressibility effects are more easily parameterized. 

4. Compressible homogeneous turbulent shear flow 
Homogeneous shear flow is the primary focus of this study. Turbulent shear flow 

presents an additional level of complexity, compared to isotropic turbulence, because 
of the anisotropy of the flow. The shear flow simulations performed, and the 
subsequent results, are discussed in this section. We begin by examining the linear 
equations of motion to gain some physical insight into compressible homogeneous 
shear flow. While compressibility effects in the decaying isotropic simulations presented 
in the previous section are dependent on initial conditions, it is found that, for 
homogeneous shear flow, measures of compressibility evolve to become independent of 
their initial values and are parameterized by the instantaneous r.m.s. Mach number. 
This property makes compressible turbulent shear flow more straightforward to model 
than isotropic turbulence. Some recently proposed modifications to k--E models are 
examined. 

4.1. Linear theory for  compressible turbulent shear flow 
Just as examination of the linearized equations of motion for decaying isotropic 
turbulence in the previous section proved useful, the linear analysis gives insight into 
the physics of compressible homogeneous turbulent shear flow. The vorticity and 
acoustic modes, which are decoupled for the isotropic case, become coupled in the 
presence of mean shear. The importance of this direct coupling to the independence 
from initial conditions of compressibility effects is discussed in $4.3. 

The inviscid linearized equations are derived from the equations of motion in the 
transformed coordinate system, (2.11)-(2.13), with the viscous and heat conduction 
terms neglected. From the linearized equations one can derive the equations for the 
vorticity, dilatation, pressure and entropy fluctuations, which are 

where 

am; -- - ism; - ss;,, 
at! 

amf + = S d  - ss;,, 
at 

(4.2) 

(4.3) 

(4.4) 

(4.7) 

is the fluctuating strain rate tensor, and d is the fluctuating divergence of the velocity 
given by (2.15). The equations for the pressure and dilatation can be combined to 
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obtain a wave-type equation; however, for the current purpose, it is not useful to do 
so. The mean shear couples the dilatation with the vorticity and the fluctuating strain 
rate. This coupling is more clearly seen by examining the Fourier transforms of the 
linearized equations. 

The Fourier coefficients (denoted by-) of the velocity can be written in terms of 
the vorticity and the dilatation as 

where epqi is the alternating tensor. The strain rate in Fourier wave space is given by 

(4.9) 
Substituting (4.8) into (4.9) and using this relation for the strain rate, the vorticity, 
dilatation and pressure equations in Fourier space are 

6, = ti(k, B,, ij; + k, Bpi a;). 

-+k; Bll(ki B,, + ki B12) 4; 
+iki B,, k; B,, 4; + (k; B,, + k; Bl,) k; B,, a), (4.1 1) 

+ (k; B,,)2 2) + S a ,  (4.12) 

((k; B,, + k; B12) h - k; B,, 4; + k; B,, 6;) - _  a2 - _  2 4  Bll s 
at’ Fa Ba, kh Bb, 

a y  - _  at, - -yp& 

(4.13) 

(4.14) 

Here we clearly see that for compressible homogeneous shear flow the vorticity mode 
and the acoustic mode are coupled. The dilatation appears on the right-hand side of 
the vorticity equations, and the vorticity appears on the right-hand side of the 
dilatation equation. This direct coupling results in the shear flow being less dependent 
on initial conditions than decaying isotropic turbulence as is shown in 94.3. 

4.2.  Compressible shear flow simulations 
The parameters governing compressible homogeneous shear flow are the same as those 
for compressible decaying isotropic turbulence with the addition of the shear rate, 
S* = az?:/ax,*. The shear rate is non-dimensionalized by c,* and L: giving S = az?,/ax,. 
A physically meaningful non-dimensional shear rate is formed from the turbulence 
velocity scale, q*, where q*z = p*u;* u;*/iP, and a lengthscale, l*. Choosing the large 
eddy lengthscale, I* = jPq*,/e*, gives 

sk = ps*q*g/e* = pSq2/e. (4.15) 
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Case sia96 sic96 scb96/192 scc961 scd96 sha192 
EO(k)+ 1 
@T)i 0.0 
(m)$ 0.0 
xo 0.0 
MO 0.2 
S 1.02 
Re 864 
Stfinal 8 

Case 

EOW+ Comb 
(T-Iy)b 
x o  

S 
Re 

MO 

st,,,,, 

1 1 
0.04 0.0 
0.016 0.0 
0.043 0.0 
0.2 0.3 
1.03 1.53 

870 576 
8 14 

sea96 
1 
0.0 
0.0 
0.0 
0.5 
2.55 

346 
16 

sed96 
1 
0.05 
0.05 
0.05 
0.5 
2.57 

349 
14 

see96 
1 
0.0 
0.0 
0.10 
0.5 
2.59 

35 1 
14 

1 1 2 
0.0 0.15 0.0 
0.0 0.15 0.0 
0.0 0.25 0 .o 
0.3 0.3 0.4 
1.53 1.59 4.08 

576 600 864 
14.14 14 24 

sef128 
1 
0.0 
0.0 
0.25 
0.5 
2.65 

360 
14 

seg969 
1 
0.0 
0.0 
0.0 
0.5 
2.55 

346 
14 

?Type of initial spectrum: top hat spectrum with energy in the wave number band (1) 8 < k < 16, 

$Same as scb96 except /3, = 0.5, /3, = 1 /42 ,  /3, = 1.0 to test the effects of the domain size in the 

9 Same as sea96 except the initial conditions were produced with a different seed for the random 

(2) 16 < k < 32. 

x,-direction. 

number generator. 

TABLE 2. Initial condition and run parameters for the shear flow simulations 

The above choice for the lengthscale I* is not unique, but it has been the usual choice 
in previous studies of homogeneous shear flow. 

Table 2 lists the parameters for the shear flow simulations performed. All of the runs 
had a initial non-dimensional shear rate, s* = 5.9, and an initial turbulent Reynolds 
number, Re, = 200. The initial r.m.s. Mach number and other initial compressibility 
parameters were varied. Most of the runs used a 963 grid; run sha192 used a 1923 grid 
with a larger computational domain, and simulation scb192 is a 1923 refinement 
of scb96 which goes from St = 10 to St = 12. The purpose of these simulations is to 
investigate the effect of initial r.m.s. Mach number and the initial values of density 
variance and x on the evolution of turbulent shear flow. 

The typical development of the turbulence during a simulation is as follows. Initially 
the shear stress, purug, is zero and, hence, there is no production and the turbulence 
decays. At later times, the shear stress builds up to the point where the production rate 
outweighs the dissipation rate and the turbulent kinetic energy grows. The integral 
lengthscales also grow, so that eventually the large eddies fill the computational 
domain and the simulation must be stopped. 

A major problem hindering simulations of compressible turbulence is that the range 
of lengthscales is broader than for the corresponding incompressible flow. An 
indication of this is seen by comparing typical incompressible measures of the large and 
small scales of the turbulence with compressible measures. The large scales of motion 
are shown by two-point correlations. Figure 6 shows the normalized two-point 
correlations of the solenoidal velocity and those of the dilatational velocity from scb96 
at St = 14. The two-point correlations of the solenoidal velocity fall off well within half 
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FIGURE 6. (a) 2-point correlations of the solenoidal velocity in the x,-direction for scb96 at St = 14. 
-, Q .*(rl); ---, Q,s*,?(r2); - . -, QuS*,?(r,). (b) 2-point, correlations of the x,-component of 
the dilati$onal velocity tor scb96 at St = 14. -, Q , r , r ( r J ;  ---, Q , r , ~ ( r , ) ;  - .-, Q,ru~(r3) .  

the length of the computational domain, showing that the large lengthscales associated 
with the solenoidal velocity field are well captured. The two-point correlations of the 
dilatational velocity, on the other hand, do not fall off as well and show some influence 
of the periodic boundary conditions. Therefore, the large lengthscales associated with 
the compressible part of the flow field are larger than those associated with the 
incompressible part. 

A measure of the small scales is gained from examining the dissipation spectrum. 
Since the dissipation rate of turbulent kinetic energy can be split into two parts, it is 
useful to consider two separate dissipation spectra. The solenoidal dissipation rate is 
proportional to the enstrophy and so is described by the enstrophy spectrum, 

-0.50 

(4.16) 

where integration is over spherical shells and t denotes a complex conjugate. The 
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FIGURE 7. Enstrophy spectrum, -, Em@) and dilatation spectrum, ---, Ed,@) 

for scb96 at St = 10. 

dilatational dissipation rate is proportional to the mean squared fluctuating dilatation 
and is therefore associated with the dilatation spectrum, 

(4.17) 

Figure 7 shows the enstrophy spectrum and the dilatation spectrum for case scb96 at 
St = 10. The dilatation spectrum does not decay as quickly at high wavenumbers as the 
enstrophy spectrum. Therefore, the dilatation is more difficult to resolve than the 
enstrophy, making simulations of compressible turbulence more difficult than those of 
incompressible turbulence. 

We have seen that the range of lengthscales using typical incompressible measures 
is not as broad as that using compressible measures. Therefore, it seems that 
compressible turbulence has a broader range of lengthscales for a given Reynolds 
number. This means that a compressible simulation must either use more grid points 
than a corresponding incompressible simulation or be limited to lower Reynolds 
numbers. 

Incompressible homogeneous shear flow is determined by two parameters, the shear 
rate, SX = TS*q*'/s*, and the turbulent Reynolds number, Re, = jPzq*4/e*,L*. The 
current simulations are compared with the incompressible simulations of Rogers et al. 
(1986), and so we need to compare the evolution of SX and Re,. For both the 
incompressible and compressible simulations, SX initially decays to a value near 3 and 
then grows. The evolution of SX for the compressible simulations follows closely that 
of the two incompressible simulations C128V and C128W of Rogers et al. The results 
for C128W increase to about 14 and then drop toward a lower, possibly asymptotic 
value. The values for C128V rise to 16. They do not decrease, but it is believed that 
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FIGURE 8. History of the turbulent Reynolds number, Re,, for the incompressible simulations of 
Rogers, -, C128U; ----, C128V; -. -, C128W; . . . , C128X; and the compressible simulations 
x,  sia96; +, scb96; m, sha192; V, sea96. 

they would do so if the simulation could be taken further in time. A large value of s* 
is the assumption made in rapid distortion theory (RDT; see Hunt & Carruthers 1990; 
Lee & Reynolds 1985). Thus simulation C128V would be expected to be the closest of 
the incompressible simulations to the RDT limit. Simulation sha192 extends the 
furthest in time of the compressible simulations. It reaches a value of P of 14, but does 
not show any sign of decreasing at later times. 

The evolution of the turbulent Reynolds number for four of the incompressible 
simulations is shown in figure 8. Simulation C128V has the lowest Reynolds numbers 
of the four. Re, for a representative sample of the compressible simulations is also 
presented in figure 8. The values of the turbulent Reynolds number for the compressible 
simulations are close to those from the incompressible simulations C128V and C128W. 
Examining simulation sha192 the values of Re, are initially close to those of C128W 
but then tend toward those of C128V. 

We have seen that, for the value of P and Re, used in the compressible simulations, 
the evolution of these quantities lie between those of the incompressible simulations 
C128W and C128V of Rogers et al. In examining the effects due to compressibility we 
will make comparisons with these two incompressible simulations. 

4.3. Dependence on initial conditions 
In this section we examine the dependence on initial conditions of compressibility 
effects for homogeneous shear flow. Figure 9 shows the evolution of x, for the shear 
flow simulations with an initial r.m.s. Mach number of 0.5. The simulations go through 
a transient phase in which 2, varies depending on the initial conditions. However, after 
some development time, x, settles down and becomes independent of its initial value. 
Other measures of compressibility such as x and the density variance show a similar 
behaviour. This independence from the initial conditions means that algebraic 
turbulence models, such as those of Sarkar et al. and Zeman, may be able to capture 
compressibility effects within compressible shear flow. 

As with the isotropic simulations, the linear analysis is useful in understanding these 
results. In $4.1 it was shown that for the linear problem the vorticity and the dilatation 
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FIGURE 9. Development of x, for simulations -, sea96; ----, sed96; -. -, see96; 
. . ., sef128; ---, seg96; which have M ,  = 0.5. 

are coupled through the mean shear. Since the vorticity and dilatation fields are 
coupled, energy is exchanged between them. One would therefore expect that the 
development would become independent of how much energy was initially in each of 
these fields. This is precisely what is observed in the simulations. 

Since the initial values of a and x do not affect the long-term behaviour of the 
simulations, only the simulations with these parameters set to zero will be examined 
further. From these simulations the effect of r.m.s. Mach number on the solutions will 
be evaluated. 

4.4. Growth rate of the turbulent kinetic energy 
In this section we will examine the growth of the turbulence and determine the effect 
of r.m.s. Mach number on the growth rate. First, consider the growth of the turbulent 
Reynolds number, Re,. The evolution of Re, for the incompressible turbulent shear 
flow simulations of Rogers et al. (1986) is shown in figure 8. After an initial transient, 
the curves become nearly straight lines on a semi-log St scale, indicating exponential 
growth. The slopes of the curves are similar for all of the simulations except at early 
times. This indicates that, over a variety of conditions, there is a single growth rate for 
incompressible turbulence. 

The exponential growth of turbulence in homogeneous shear flow and the existence 
of a single growth rate for incompressible turbulence are ideas which are not without 
controversy. Tavoularis (1985) provided an analysis which predicts an exponential 
growth of the turbulent kinetic energy. The experiments of Tavoularis & Karnik (1989) 
have some cases in which the turbulent kinetic energy grows exponentially and some 
for which it seems to asymptote to a constant level. The latter cases do not extend very 
far in terms of total strain, which may be the reason exponential growth is not 
observed. However, the cases which do show exponential growth do not display a 
universal growth rate. Also, recently Bernard & Speziale (1990) have put forward a 
theory for which the turbulence grows exponentially and then levels off. Current 
experiments and simulations do not extend far enough in time to test this theory. Even 
though the behaviour of incompressible homogeneous turbulent shear flow is not 
settled, the exponential growth exhibited by the simulations of Rogers et al. is clear, 
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FIGURE 10. Comparison of the normalized turbulent kinetic energy for -. -, sha192 and the 
incompressible simulations -, C128V and ----, C128W. 

and the results of the compressible simulations will be directly compared to these 
incompressible simulations. 

The compressible simulations shown in figure 8 are sia96, scb96, sha192, and sea96, 
which have initial r.m.s Mach numbers of 0.2,0.3,0.4 and 0.5, respectively. Simulation 
sia96 has a slope close to that of the incompressible simulations. For the other 
compressible simulations one sees that as the r.m.s Mach number increases, the growth 
rate is reduced. The reduction in the growth rate of the turbulence with Mach number 
is similar to the behaviour that has been observed in experiments and simulations of 
compressible mixing layers and wakes (Sandham & Reynolds 1991 ; Chen, Cantwell & 
Mansour 1990). 

In modelling turbulence one is more concerned about the growth rate of the 
turbulent kinetic energy, k, than the turbulent Reynolds number. However, the 
turbulent kinetic energy takes longer to develop than ReT, and the simulations sia96, 
scb96 and sea96 do not extend far enough in time to see exponential growth in k. 

In order to see the development of the turbulence further in time, simulation sha192 
was performed using a 1923 grid. The resolution is the same as for the other 
simulations, but the computational domain is twice as large in each direction relative 
to the turbulence lengthscales. This allows the simulation to proceed further in St 
before the large lengthscales outgrow the computational domain. At St = 24 the two- 
point correlation of the x 2  component of the dilatational velocity begins to show signs 
of being influenced by the periodic boundary conditions and the simulation is stopped. 

The turbulent kinetic energy for sha192 is compared to that of the incompressible 
simulations C128V and C128W in figure 10. Although there is some variation between 
the two incompressible simulations, the growth rate of the turbulence for the 
compressible simulation is clearly reduced. As discussed earlier, the evolution of the 
non-dimensional shear rate, @, and the turbulent Reynolds number, ReT, shown in 
figure 8, for the compressible simulation sha192 lie between the values for the 
incompressible simulations C128V and C128W of Rogers. On this basis the budgets for 
the turbulent kinetic energy for these simulations can be compared to determine the 
effects of compressibility. 
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FIGURE 11. Comparison of the scaled turbulent kinetic energy budgets for sha192 and the 
incompressible simulations C128V and C128W. Simulation sha192 (symbols) extends to St = 24, 
C128V to St = 26, and C128W to St = 28. Prod, production term; RHS, right-hand side; Diss, 
dissipation term; visc, variable viscosity term. 

The turbulent kinetic energy (TKE) equation is examined in order to determine 
which terms are responsible for the reduced growth rate. When the turbulent kinetic 
energy equation is scaled by the shear rate and k, the resulting equation is 

-+ w w 
production €8 Ed P-dilatation - 

negligible 
v 

negligible 

The reason for using this scaling is that a constant right-hand side in equation (4.18) 
indicates exponential growth. The first term on the right-hand side is the production 
term. The second is the solenoidal dissipation rate, es, which is the same as the 
dissipation rate in incompressible turbulence. For incompressible flow, only the first 
two terms on the right-hand side are present. The third term, ed, is the dilatational 
dissipation rate. It is proportional to the mean squared fluctuating dilatation 
(divergence Df velocity) and only occurs in compressible flows. The fourth term is the 
pressure-dilatation correlation. This term is responsible for the exchange of kinetic and 
internal energy through the reversible work mode. The last two terms on the right-hand 
side are correlations involving fluctuations of viscosity (which is temperature 
dependent); the simulations show that these two terms are negligible. 

The scaled TKE equation for sha192 is compared to that for the incompressible 
simulations in figure 11. The right-hand side of the scaled TKE equation for each of 
the three simulations does reach an approximately constant value, implying exponential 
growth. The growth rate for C128V is less than that for C128W mainly because of a 
smaller production term. The right-hand side for the compressible simulation is 
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reduced compared to both of the incompressible simulations. We are now in a position 
to determine which of the terms in the scaled TKE equation are responsible for the 
reduced growth rate of the compressible simulation. 

The production term for sha192 is close to that for C128V, which is less than that 
for C128W. The reason for the difference in the results for the two incompressible 
simulations is the low Reynolds number of simulation C128V. Because of the difference 
in the incompressible simulation results, one cannot tell whether the production term 
for sha192 is reduced because of compressibility effects or because of low-Reynolds- 
number effects. In order to make a definite statement about compressibility effects on 
the production term, compressible simulations at higher Reynolds numbers are needed. 

The solenoidal dissipation term has similar values to the dissipation term from the 
incompressible simulations. This result confirms the modelling assumptions of Sarkar 
et al. (1991 c) and Zeman (1990) that the solenoidal dissipation rate can be modelled 
in the same way as the dissipation rate in incompressible flows. The main reason the 
right-hand side is reduced for the compressible simulation is the presence of the 
additional terms in the TKE equation. The dilatational dissipation rate is about 10 % 
of the solenoidal dissipation rate and is an even more significant fraction of the right- 
hand side. The second compressible term in the TKE balance is the pressure-dilatation 
term. It oscillates considerably but is roughly of the same magnitude as the dilatational 
dissipation rate and also acts to reduce the right-hand side. The two terms involving 
correlations of fluctuating viscosity are essentially zero and can be neglected. Thus, we 
see that it is both the dilatational dissipation rate and the pressure-dilatation 
correlation which act to reduce the growth rate of the turbulence in compressible 
homogeneous shear flow. Models for these terms are examined in the next two sections. 

4.5. ~ilatational dissipation 
In $3.3  we mentioned that models for the dilatational dissipation have been proposed 
by Sarkar et al. (1991 c)  and Zeman (1990) in terms of ed/e,. The assumptions made by 
Sarkar et al. and Zeman are quite different. Sarkar’s model is based on ideas from 
linear acoustics while Zeman’s model assumes the existence of shock-like structures in 
the flow. Both models use the turbulent Mach number, M T ,  as a parameter. Sarkar’s 
model is 

= cS wT, (4.19) 
where cs = 1.0, and Zeman’s model is of the form 

‘ d e s  = cZ F(MT),  (4.20) 
where in the comparison discussed below the model constant cz = 0.5. The function 
F(MT) is an integral involving the probability density function (PDF) of the Mach 
number fluctuations. The form given in equation (5)  of Zeman (1991) is used for 
comparison. 

Figure 12 shows ed/e, plotted as a function of r.m.s. Mach number on log-log axes 
for the shear flow simulations. The simulations with a given initial r.m.s. Mach number 
have different values of ed/e ,  depending on xo. As the simulations progress (indicated 
by the arrows) the values of ed/e ,  come together. The value of ed/es,  after the effect of 
initial conditions has disappeared, is the value that should be compared to the models. 
The solid line shows the model of Sarkar et al. and the model of Zeman is shown as 
the dashed curve. Sarkar’s model is seen to do an excellent job compared to the 
simulations, while Zeman’s model predicts a much faster increase of e,Je, with r.m.s. 
Mach number. Overall Sarkar’s model matches the results of the simulations more 
closely. 
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Mrm, 
FIGURE 12. Dissipation ratio, EJE,, as a function of M,,, for $, sia96; x, sic96; A, scb96; f, scc96; 
x , scd96; 0, sea96; 0, sed96; a, see96; *, sef128; @ ,  seg96; m, sha192; and for the models of 
-, Sarkar et al. ; and ----, Zeman. 

Closer examination of the simulation results shows that, beyond My,, N 0.3, ed/e, 
flattens out and becomes nearly constant with a value of 0.09. This result is somewhat 
surprising and we considered several possible reasons for its occurrence. There is a 
plausible physical explanation for ed/6, becoming constant. As the r.m.s. Mach number 
increases, the dissipation rate increases due to local compression regions (i.e. shock 
waves). The turbulence may reach the point where the increased dissipation rate is 
sufficient to keep the r.m.s. Mach number from growing. If there is a limiting value of 
the r.m.s. Mach number then there would be corresponding limiting values of the 
measures of compressibility such as ed/e,. A limiting r.m.s. Mach number has been 
predicted in the modelling of a compressible mixing layer by Zeman (1990) and Sarkar 
& Lakshmanan (1991). Part of the reason case sha192 was run was to test whether 
there is a limiting r.m.s. Mach number. For the sha192 curve in figure 12, ed/es becomes 
constant but the r.m.s. Mach number continually increases and no sign of a limiting 
r.m.s. Mach number is seen. So this does not seem to be the reason for the observed 
behaviour. 

An alternate reason for the levelling off of ed/es is that it may be due to numerical 
errors. Simulations scb96, scc96 and scd96 outgrow the computational domain at 
about the same time that ed/e, becomes constant so that the issue of box size becomes 
a concern. Simulation sha192 has a larger computational domain and still has the same 
behaviour. Therefore, the behaviour is not due to the simulation running out of box 
size. 

Another explanation for the observed behaviour of ed/e,  becoming constant could 
be a lack of resolution. The dissipation occurs at small scales and as the r.m.s. Mach 
number increases it is more likely that shocks will form which will be difficult to 
resolve. In 0 5.3 the structure of the turbulence is examined and shocks are found. These 
shock waves are not well resolved, giving rise to a concern over resolution. 

It is not feasible for us to increase the resolution of simulation sha192; however, the 
effect of resolution can be tested on the 963 simulations that exhibit the same 
behaviour. The fields from scb96 at St = 10 were interpolated onto a 1923 refined mesh 
and the simulation run to St = 12. This new simulation is called scb192. The results of 
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FIGURE 13. Comparison of ed/e, for -, scb96 and ---, scb192 (St = 1&12). 

the two simulations are compared in figure 13. The two simulations are nearly identical 
up to the point of the next remeshing. This is seen as a discontinuity in ed/e,  for scb96 
at S t  = 11. Since simulation scb192 has a refined grid, the remeshing process does not 
affect the simulation as much. As the simulations evolve after the remesh, the 
agreement improves. It seems that the effect of the remesh is lost. Overall the agreement 
of the two simulations is good and ed/e, becomes roughly constant for scb192 also. 
This seems to show that the observed behaviour is not due to a lack of resolution of 
the small scales. Currently, the reason for the observed behaviour is not known. 
However, we remain cautious in accepting this result, because even the 1923 mesh is 
inadequate for full resolution of the strongest shock waves present in the simulations. 

4.6. Pressure-dila ta tion correlation 
The second term which is important for modelling of compressible turbulent flows is 
the pressurdilatation correlation, pau;/ax,. For decaying isotropic turbulence the 
pressuredilation term becomes small after an initial transient. For homogeneous shear 
flow the pressure-dilatation cannot be neglected. 

Zeman (1991) has proposed a model for pau;/ax,. The model relates the 
pressure-dilatation to the time derivative of the pressure variance by 

- 
au; 1 d. p-  = ---p’p. 
ax, 2yjidt 

(4.21) 

The pressure variance is assumed to relax to an equilibrium value, p:, following 

where 7, is an acoustic timescale. The equilibrium value 
assumed to scale with Mach number as 

(4.22) 

of the pressure variance is 

(4.23) 
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FIGURE 14. Test of Zeman's modelling assumption linking -, the pressure-dilatation, 

and ---, the time derivative of the pressure variance, using data from sha192. 

FIGURE 15. Development of the pressure variance scaled by the square of the mean pressure vs. 
M,,, for 0, sia96; 0, scb96; A, sea96; +, sha192 and ---, the model of Zeman. 

where the reported model constants are a = 1 and /3 = 2, which were determined by 
comparison with DNS of decaying isotropic turbulence. This form allows for an M$ 
behaviour at low r.m.s. Mach numbers, consistent with the acoustic analysis of Sarkar 
et al. (1991 c), and an WT variation at higher r.m.s. Mach numbers. 

Some of the modelling assumptions made by Zeman can be tested directly from the 
DNS data. Figure 14 compares the pressure-dilatation for case sha192 to the right- 
hand side (4.21). The agreement is excellent, showing that (4.21) is a good assumption. 
This is also seen for the isotropic simulations as reported by Zeman (1991). One would 
not want a turbulence model to follow the detailed oscillations that occur in the 
simulation. The general trend and order of magnitude of the pressure dilatation can be 
captured if (4.23) gives the correct scaling. Figure 15 shows the normalized pressure 
variance,p'p'/p, from the shear flow simulations compared to that predicted by (4.23). 
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At lower r.m.s. Mach numbers the model scales with M,,, in the same way as the 
simulation data, although the pressure variance predicted is somewhat higher than that 
of the simulations. This may occur because the simulations are not in equilibrium and, 
therefore, lag the equilibrium value of the pressure variance. At higher r.m.s. Mach 
numbers the simulation data follows an WT scaling much sooner than that predicted 
by the model. Therefore, different values of the model constants or a different form of 
the fitting function in (4.23) may be needed. 

5. Structure of compressible turbulent shear flow 
In this section we explore the structure of compressible homogeneous turbulent 

shear flow. This information provides physical insight and should prove useful for 
future model development. Probability density functions (PDFs) and flow vis- 
ualizations are used as tools to gain understanding of the flow. In addition to the 
velocity and vorticity fields which are studied in incompressible turbulence, we also 
consider the dilatation and thermodynamic fields which are important for compressible 
flows. Examination of the compressible aspects of the turbulence reveals the presence 
of shocks embedded in the flow. This feature is important to our physical understanding 
of compressible turbulence and to the development of turbulence models for highly 
compressible flows. 

5.1, Nature of the velocity jield 
The velocity field in homogeneous turbulence is essentially Gaussian in that the 
skewness and flatness are near the values for a Gaussian random process (0 and 3, 
respectively). However, the velocity derivatives are highly non-Gaussian. The flatness 
of the velocity derivatives is a measure of the intermittency of the small scales of the 
turbulence. As in the incompressible case, the intermittency of the small scales increases 
as the Reynolds number increases. 

Compressibility effects on the small scales of the velocity field can best be seen by 
examining the vorticity and dilatation instead of individual velocity derivatives. The 
skewness and flatness factors for the vorticity components are given in figure 16 for 
simulation sha192. Only the x, component of the vorticity has a non-zero skewness and 
it also has the largest flatness value, reaching a value of 5 at St = 24. The skewness of 
the divergence of velocity grows monotonically, similar to that of us, and reaches a 
value of - 1.5 at St = 24. The skewness is negative indicating that the strongest 
dilatations tend to be compressions rather than expansions. The flatness of the 
dilatation increases to 10 at St = 24, which is much greater than the Gaussian value of 
3. Comparing these statistics for the vorticity and the dilatation, we find that the 
dilatation is more highly skewed and more intermittent than the vorticity. This general 
trend has also been seen by Sarkar (1991a). 

The skewness and flatness of the dilatation show that there are likely to be strong 
compression regions or shock waves within the flow. An indication of how much of the 
flow field contains strong compression regions is given by examining the PDF of the 
dilatation, %,(d‘). This is shown in figure 17 for simulation sha192 at St = 24. By 
integrating the PDF one can find out how much of the flow has a dilatation more 
negative than a certain number (negative dilatation indicating compression). However, 
picking a specific value of the dilatation which represents a ‘strong compression’ is at 
best arbitrary. 

A better question to address is this : which values of the dilatation, corresponding to 
compressions, contribute the most to the dilatational dissipation rate and how much 
of the flow field contains such compressions? Since the dilatational dissipation rate is 
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FIGURE 16. Development of (a) the skewness and (b) the flatness of the components of the 
vorticity for sha192. 0,  ol; 0, w z ;  A, w3. 

proportional to the mean-squared fluctuating dilatation, the answer can be found by 
examining the weighted PDF 

J d"%,(d')dd' 
-m 

where %,(d), is the PDF of the dilatation. This is plotted in figure 18 for simulation 
sha192 at St = 24. Examining the weighted PDF, B;,(d'), we see that most of the 
dilatational dissipation is due to negative dilatations, or compressions, but that a 
significant amount of the dissipation also comes from low-level positive dilatation. 
This is also seen for the high-resolution simulation scb192 and is, therefore, not caused 
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FIGURE 17. PDF of the dilatation for sha192 at St = 24. 
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FIGURE 18. Weighted PDF of the dilatation, which gives the contribution to the dilatational 

dissipation rate, for sha192 at St = 24. 

by poor resolution. The most extreme values of the dilatation occur infrequently and, 
therefore, have negligible contributions to the dilatational dissipation, while the 
moderate values of the dilatation contribute significantly. 

The peaks in the weighted PDF show the values of the dilatation that contribute the 
most to the dissipation rate. From figure 18 we see that peaks for compressive 
dilatations occurs for d' = - 3.32. By integrating the PDFs we find that 6.8 YO of the 
flow field has a negative dilatation of this magnitude or larger and that these values of 
the dilatation account for 50.7 YO of the dilatational dissipation rate. We also find that 
23% of the dilatational dissipation rate is due to the most compressive dilatations 
making up 1 YO of the flow field while the most compressive dilatations making up 10 % 
of the flow account for 58 % of the dilatational dissipation rate. Therefore, moderately 
strong negative dilatations, which occupy only a small portion of the flow field, 
contribute significantly to the dilatational dissipation rate, although they are not 
entirely responsible for the dilatational dissipation. 
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The specific values of the dilatation and the percentages cited above are dependent 
on the level of compressibility in the flow, and we believe are also dependent on the 
Reynolds number, but the weighted PDF does provide a valuable tool for addressing 
such questions. The weighted PDF is used further in $5.3. in examining compressible 
structures. 

5.2. Nature of the thermodynamic jields 
For compressible turbulence there are fluctuations of the thermodynamic variables, 
density, temperature and pressure. In turbulence modelling one usually assumes some 
type of correlation among them. Rubesin (1976) relates these fluctuations through a 
pdlytropic coefficient, n, 

PI- P‘ - n T 
p p n-1 T ’  - -n: - -- 

n = y corresponds to isentropic flow; n = 1, isothermal; and n = 0, isobaric. The 
polytropic coefficient is not a well-defined local quantity because it is possible to have 
p’ = 0 while p’ =I= 0. One can obtain an ‘average’ value of n from 

This average polytropic coefficient is shown for several of the shear flow simulations 
in figure 19. The value for early times can vary depending on the strength of the 
entropy fluctuations in the initial conditions. However, the results from all of the 
simulations tend toward n slightly less than y ( = 1.4). Therefore, the density, 
temperature and pressure fluctuations follow a nearly isentropic process. The results 
for decaying isotropic turbulence, which are not shown, are more dependent on initial 
conditions, as would be expected. 

The result for shear flow, that the turbulence is nearly isentropic, conflicts with the 
assumption usually made for compressible boundary layers, that pressure fluctuations 
are negligible compared to density and temperature fluctuations (Bradshaw 1977). The 
major reason for this difference is that for a compressible boundary layer there is a 
density and temperature gradient normal to the wall, while the homogeneous 
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In P 
FIGURE 20. -, PDF of the logarithm of the density, compared to ---, a Gaussian PDF with 

the same mean and variance, for sha192 at St = 24. 

simulations do not have a gradient in the mean density or temperature. In a 
compressible boundary layer the flow is layered and it seems that the turbulence would 
act to stir up the density and temperature much as it would a passive scalar. This action 
of the turbulence would give very different behaviour in the fluctuations of density and 
temperature than is observed in the present homogeneous shear flow simulations. 

The nature of the density, pressure and temperature fluctuations can also be seen by 
considering their individual PDFs. Since the density must be positive, the fluctuations 
are bounded from below by p’ > -p. Therefore, it may make sense to consider the 
PDF of the logarithm of the density, which can be both positive and negative, rather 
than the density itself. This is shown in figure 20, compared to a Gaussian with the 
same mean and variance. There is good agreement with the Gaussian except far out in 
the tails of the PDF. For events near the extrema, the sampling is low, and any lack 
of resolution in the simulation is likely to show up in this region. 

The PDF for the logarithm of the density is nearly Gaussian, which means that the 
density follows a log-normal distribution. Therefore the probabilities of the density 
fluctuations are related in a geometric rather than an algebraic fashion. Physically this 
means that the flow is as likely to undergo a 2: 1 compression as a 1 :2 expansion. The 
PDFs of the pressure and temperature behave in a similar fashion, although the PDF 
of In T does not agree with the Gaussian as well as that for lnp or lnp. One of the 
reviewers for this paper noted that there is good reason to expect a log-normal 
distribution for the density. From the continuity equation in Lagrangian coordinates 
we have p(t) = p(0) exp (- [ V u dt). If the integration is over a time long compared to 
the autocorrelation time of the divergence of velocity, then the interval of integration 
can be broken up to give a sum of independent random variables. From the central 
limit theorem (Feller 1968), the resulting sum will have a Gaussian distribution, so that 
the density would be log-normal. 

5.3. Compressible turbulent structures 
Relatively little is known about structures within a compressible turbulent flow that are 
directly related to compressibility. Shocks have been observed within decaying 
isotropic turbulence by several researchers (Passot & Pouquet 1987; Passot et al. 1988 ; 
Erlebacher 1990; Kida & Orszag 1990a; Lee et al. 1991). Compressibility effects in 
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FIGURE 21. Contours of the divergence of the velocity in an (x l ,  x,)-plane for scb192 at St = 12. Dark 
shading corresponds to strong negative dilatation. (The point with the minimum dilatation in the 
entire field lies in the centre of the plane shown. The view shown is 81 x 81 grid points.) 

FIGURE 22. Contours of the pressure in the same (xl, x,)-plane shown in figure 21. Dark shading 
corresponds to high pressure. 

decaying isotropic turbulence diminish as the turbulence evolves (except at early times 
when transient effects are strong). However, in compressible shear flow, the turbulence 
grows in time and compressibility effects become stronger as the flow develops. Since 
it takes some time for turbulence in a numerical simulation to develop away from its 
artificial initial conditions, the study of compressible turbulent structures is in some 
ways easier in homogeneous shear flow than in isotropic turbulence. 

First, we examine simulation scb192 at St = 12. This simulation is the most highly 
resolved and gives the most reliable results. We then consider simulation sha192 at 
St = 24. This field has the highest r.m.s. Mach number and the strongest compressibility 
effects. However, the grid spacing is twice as coarse as for scb192, and the lack of 
resolution is apparent. 

Structures related to the compressibility of the turbulence are expected to be located 
in regions where the divergence of the velocity is large and negative. Figure 21 shows 
contours of the divergence of the velocity in an (xl, x,)-plane which cuts through the 
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FIGURE 23. Close-up view of contours of pressure with perturbation velocity vectors superposed 
in the ( x ~ ,  x,)-plane shown in figure 21. (The view shown is 25 x 25 grid points.) 

FIGURE 24. Contours of the dilatation in the same plane shown in figure 21 with the contour 
corresponding to the negative peak in P;, highlighted. 

point of strongest dilatation. A thin, elongated region of strong compression lies at an 
angle of about 20" to the x,-axis. Contours of the pressure in the same plane are shown 
in figure 22. A similar region of high pressure is present with large gradients where the 
dilatation is strongest. There is also a large region of low pressure just above the thin 
region of dilatation. In figure 23 a close-up view of the velocity vectors in the plane are 
shown. The velocity vectors come down at an angle and suddenly change direction. 
The compressible structure appears to be an oblique shock wave. 

In 9 5.1 we used the weighted PDF of the dilatation to determine what values of the 
dilatation were responsible for most of the dilatational dissipation. For simulation 
scb192 at St = 12 the negative peak in Y:,(d') occurs at d' = -0.93. This value of the 
dilatation is highlighted in figure 24. The contour is associated with the periphery of 
the eddy shocklet and weaker compression regions in the area. The values of the 
dilatation from the strongest part of the shocklet occur too infrequently to contribute 
significantly to the dilatational dissipation rate. However, since the highlighted contour 
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FIGURE 25. Contours of the divergence of the velocity in an (x2, x,)-plane which cuts through the point 
of minimum dilatation in scb192 at St = 12. Dark shading corresponds to strong negative dilatation. 
(The view shown is 81 x 81 grid points.) 

occurs near the eddy shocklet, it appears that eddy shocklets are important to the 
dynamics of the dilatational dissipation. 

The three-dimensional structure of the shock is shown by cutting it with an (x,, XJ- 

plane. Figure 25 shows the dilatation in this plane. The shock wave is thin in the x,- 
direction but also does not extend very far in the x,-direction. The shock is shaped 
more like a ribbon than the broad sheet that might be expected. 

In order to determine how the shocklets arise we consider their relationship to the 
vortical part of the flow field. The pressure contours presented in figure 22 show that 
the shock is inclined at an angle of about 20" to the direction of the mean velocity. The 
observed behaviour is suggestive of typical streamwise vortical structures in shear 
flows. However, as is pointed out below, the vortical structures in the current 
simulations resemble those seen in rapidly sheared turbulence rather than the hairpin 
vortices typical of higher-Reynolds-number shear flows. 

Figure 26 shows contours of the streamwise vorticity in the spanwise (xz, x,):plane, 
with velocity vectors overlaid. There is a contour of negative streamwise vorticity and 
a contour of positive streamwise vorticity which lie on opposite sides of the shock 
location and which are associated with a downwash just above the shock. The 
downwash is in the direction of the mean velocity gradient. 

From this view, a mechanism for the generation of the shocks seems clear. The 
vorticity creates a motion in the direction of the mean velocity gradient, either a 
downwash or an upwash, which causes high-speed and low-speed fluid to come into 
contact. This causes a compression which results in a shock. 

The contours of streamwise vorticity shown in figure 26 suggest the presence of 
stream-wise vortical structures typical of turbulent shear flows. Figure 27 shows vortex 
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FIGURE 26. Contours of streamwise vorticity with velocity vectors superposed in the same plane 
shown in figure 25. Dark shading corresponds to negative w l ,  light shading to positive w l .  

FIGURE 27. Vortex lines which go through the two contours of w1 in figure 26 which are 
associated with the downwash toward the point of minimum dilatation. 
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FIGURE 28. Contours of pressure in an (xl, x,)-plane for sha192 at St = 24. Dark shading corresponds 
to high pressure. (The point with the minimum dilatation in the entire field lies in the centre of the 
plane shown. The view shown is 49 x 49 grid points.) 

lines that were started at the centre of the two contours of streamwise vorticity. They 
form what appears to be an inverted hairpin vortex. The downwash is due to the 
induced velocity field from these concentrated vortex lines. Further study shows that 
the vortex lines are part of an irregular corrugated vortex sheet. M. Lee (private 
communication) has shown that rapidly sheared turbulence results in corrugated 
vortex sheets, although they are much more regular than those we have observed. 
Therefore, the current simulations bear some resemblance to rapidly distorted 
turbulence. Recall that in $4.2 it was pointed out that simulation C128V lay the closest 
of the incompressible simulations to the rapid distortion limit, and that the parameters 
for the current simulations are similar to those of this run. The vortical structures of 
the current simulations are not fully understood, but it appears that streamwise 
vortices are responsible for the downwash associated with the eddy shocklet. 

We next examine the fields from simulation sha192 at St = 24. The pressure in an 
(q, x,)-plane is shown in figure 28. Again, there is a long, thin region of high pressure 
showing the position of the shock. The structure lies at an angle of 15" to the x,-axis. 
There is also a considerable amount of Gibbs' phenomenon, in which strong 
oscillations occur because the shock is too thin to be resolved on the current grid. This 
shock is the strongest in the entire flow field and represents the greatest resolution 
problem. In spite of the lack of resolution, it is believed that the insights gained from 
this simulation are still useful. 

The velocity vectors in the cross-plane ((x,,x,)-plane) are shown in figure 29 
superposed on contours of streamwise vorticity. The shock results from a strong 
upwash associated with a vortex pair. The same mechanism appears responsible for the 
generation of the shock. 

The mechanism discussed above is not the only plausible way shocklets may be 
created. In order to be certain of the mechanism, the temporal evolution of the eddy 
shocklet would have to be examined. This would be somewhat difficult since the grid 
moves in time, but such an investigation should provide valuable information. 
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FIGURE 29. Contours of streamwise vorticity with velocity vectors superposed. Dark shading 
corresponds to negative ol, light shading to positive ol. (The plane shown is an (xz, x,)-plane which 
cuts through the point of minimum dilatation in sha192 at St = 24. The view shown is 49 x 49 grid 
points.) 

6. Conclusions 
Compressible homogeneous turbulence has been studied using direct numerical 

simulation. Two classes of flows have been considered : decaying isotropic turbulence 
and homogeneous shear flow. In order to determine the effect of compressibility on the 
turbulence, the initial r.m.s. Mach number as well as the initial levels of density, 
temperature and dilatational velocity fluctuations have been varied. Some recently 
proposed turbulence models for compressible flows have been investigated. 

The simulations of decaying isotropic turbulence show that, in the absence of mean 
deformation, the evolution of compressibility effects, such as the fraction of dissipation 
rate due to dilatation, x,, are dependent on the initial conditions. If the initial 
conditions do not include any acoustic-type fluctuations, compressibility effects will 
develop more weakly than if these fluctuations are initially present. This behaviour is 
consistent with the linear equations with no mean flow, which show that the vorticity 
mode and the acoustic mode are decoupled. The recently proposed models for 
compressible flow assume that x, is uniquely determined by the r.m.s. Mach number. 
Since this is not the case for decaying isotropic turbulence, these models cannot work 
in general for this flow. The dependence on initial conditions also points to the 
importance of accounting for history effects in flows that have regions of low mean 
strain. 

18 FLM 256 
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The simulations of homogeneous shear flow show that the turbulence evolves to 
become independent of the initial level of acoustic-type fluctuations. This independence 
from its initial conditions means that simple algebraic turbulence models may be able 
to correctly capture compressibility effects within shear flows. The observed behaviour 
can be understood from the linear equations which show that the vorticity and acoustic 
modes are coupled in the presence of mean shear. 

The compressible homogeneous shear flow simulations exhibit a reduction in the 
growth rate of the turbulence compared to incompressible simulations. The principal 
reason for this reduction is the dissipation rate due to dilatation, ed, and the 
pressure-dilatation correlation. Both of these terms in the turbulent kinetic energy 
equation occur only for compressible flows. 

The evolution of the ratio of the dilatational and solenoidal dissipation rates, ed/es, 
in the simulations agrees very well with the w,, variation predicted by the model of 
Sarkar et al. (1991 c) up to M,.,, N 0.3. For higher r.m.s. Mach numbers ed/es from the 
simulations becomes roughly constant. While this result could be due to lack of 
resolution, a test with a refined grid gave identical results which would suggest that the 
behaviour is not spurious. However, we remain cautious in accepting this result. 

Zeman (1 99 1) has proposed a model for the pressure4ilatation correlation in terms 
of the variance of the pressure. The basic concept of this model has been shown to be 
valid; however, the variation of p'p' with M,,, from the simulations is somewhat 
different at higher r.m.s. Mach numbers from that assumed. 

The effect of compressibility on the structure of the turbulence is most noticeable in 
the formation of eddy shocklets. In shear flow these occur as eddy motions 
transporting fluid in the direction of the mean velocity gradient. It is believed that they 
form when low-speed and high-speed fluid elements are brought together. The 
formation of shock waves causes the simulations to become poorly resolved. The effect 
of resolution on the results has been addressed and, although the results do not seem 
to be affected, the issue of resolution remains a concern. 

A weighted PDF of the dilatation has been defined which gives the contribution to 
the dilatational dissipation rate. It shows that intermediate values of the dilatation, 
which occur on the periphery of the strongest eddy shocklets and throughout weaker 
compression zones, contribute the most to the dilatational dissipation rate. 

The fluctuations of density, pressure and temperature closely follow that of an 
isentropic process. The presence of shock waves just mentioned would seem to indicate 
that the turbulence should not behaviour isentropically. However, for weak shocks 
very little entropy is produced and the observed results are not contradictory. The 
density, pressure and temperature have probability density functions which agree well 
with the log-normal distribution. 

This study has left many unanswered questions and has raised some new ones that 
deserve further investigation. In order to determine compressibility effects on the 
production term in the turbulent kinetic energy equation, simulations at higher 
Reynolds number are required. The result that ed/e, becomes constant at higher r.m.s. 
Mach numbers needs to be verified. We were unable to ascertain whether a limiting 
value of the r.m.s. Mach number exists; however, testing of this important concept 
warrants further simulations. Lastly, the mechanism of eddy shocklet generation 
should be studied in more detail. 
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